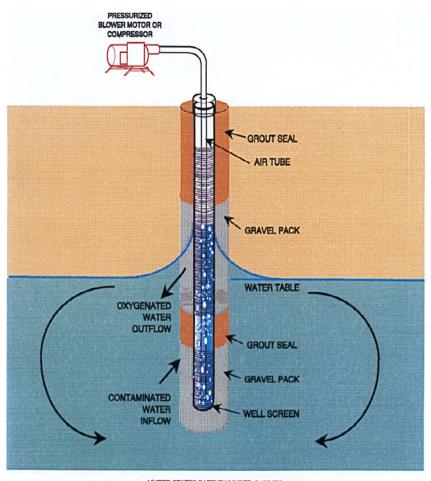
HQ Air Force Center for Environmental Excellence (AFCEE)

Integrity - Service - Excellence

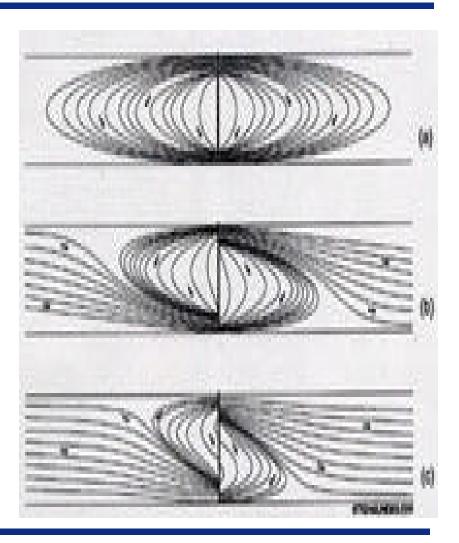
Groundwater Circulation Well Technology Review



Jim Gonzales
AFCEE
Technology Transfer Division
31 Jan 01

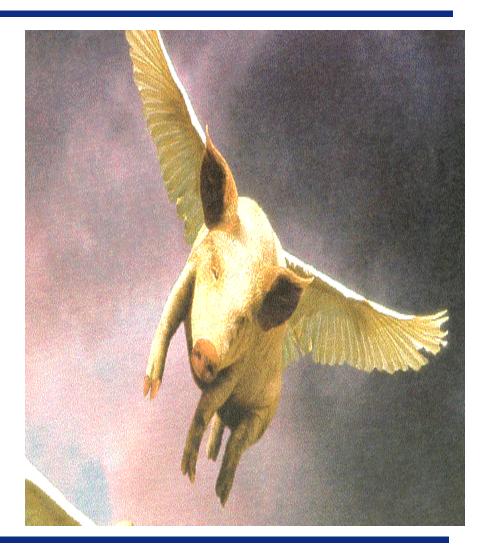
GCW BASICS

- Also Called Recirculation Wells, UVB, NoVOCs, Density Driven Convection, etc.
- Groundwater is Extracted From One Depth, Treated in Well, Usually Aerated, and Discharged to a Different Depth


UNITED STATES PATENT NUMBER: 5,425,598

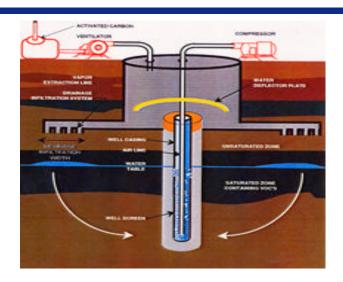
GCW - BASICS

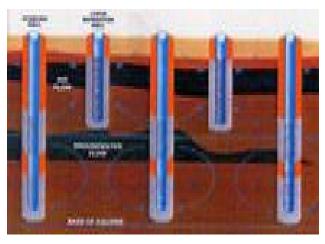
Objective is to develop "Recirculation Cell" in the aquifer


Generally, relies on multiple passes through GCW in order to achieve "significant" reductions in concentrations

GCW - Demonstration Sites

- Cape Canaveral AFS
- Edwards AFB
- Hill AFB
- Keesler AFB
- March AFB
- Massachusetts Military Reservation (MMR)
- North Island NAS
- Oceana NAS
- Port Hueneme
- Tyndall AFB
- Yuma MCAS
- Others


AFCEE Position on GCW Technology


- Special case of Extraction, Treatment and Reinjection (ETR):
 - single well used for extraction and re-injection
 - treatment occurs down hole versus aboveground
- GCW is not a wholly different process
 - simply depends on chosen point of re-injection
 - ETR systems can be designed in <u>close-coupled</u> <u>configuration</u> with traits similar to GCW

Close-Coupled Configuration

- Refers to ETR systems designed with re-injection wells very close to the extraction wells
 - extraction and injection screens adjacent to each other at same depth intervals as GCW
 - such a system would operate much like GCW
 - avoiding, however, many shortcomings of traditional GCW technology

Extraction-Treatment-Reinjection Continuum

onvention	onal	GCW
← ETR —		-
		Vertical Flow
Capture Zone		
Monitoring		
Geological Sensi	tivity	
	Water I	_evel Change
Design Simplicity		
Flexibility		
Experience		
	Less Favorable	More Favorable
	n of Extraction, Treatment, and lation Wells (GCW).	Reinjection (ETR)

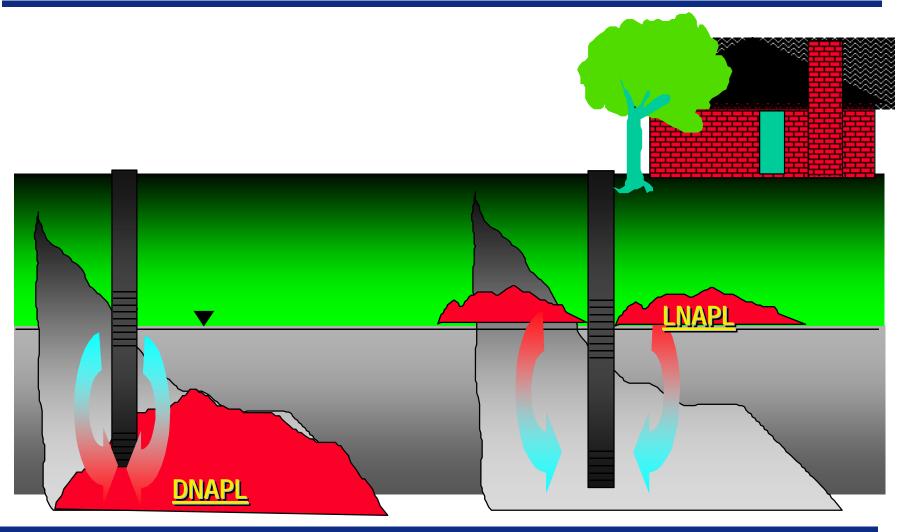
GCW - Vendor Claims

CLAIMS:

- More Effective Than Pump and Treat (PnT)
- Lower Cost Than PnT
- **Fewer Wells** Than PnT
- Lower Energy Requirements Than PnT
- All Components <u>Below</u> <u>Ground</u>
- Permitting Advantages Over PnT

AFCEE EXPERIENCE:

- Not substantiated
- Not substantiated
- Not substantiated
- NO!
- Yes, but ...
- Yes, but ...

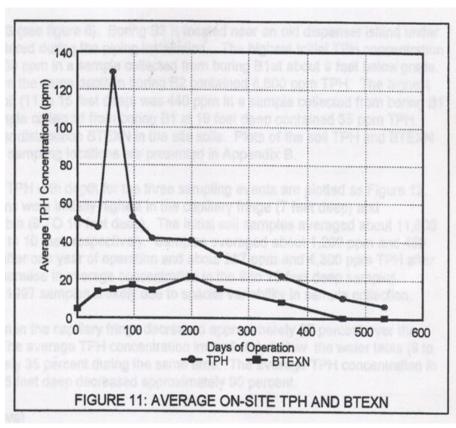


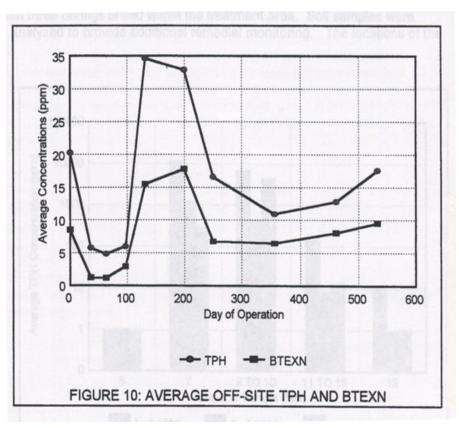
GCW - More Effective Than Pump and Treat?

- Vertical flow has potential to increase removal of NAPL
 - However, if no highly contaminated source zone exists, then no value in inducing vertical flow
- Radius of Influence is generally less (at given flow rate)
 - Portion of effluent is recirculated
 - Represents previously treated Groundwater
 - Volume Limited with respect to first pass fraction
- Recirculation promotes dilution (less efficient)
 - Mass Flux (mg/min) = Flow rate (L/min) X Conc. (mg/L)
 - Mass Loading Limited due to recirculation
- Difficult to Assess Advantages Accurately
 - Usually Based on Modeling or Indirect Evidence


GCW - Vertical Flow Advantage with NAPLS

Integrity - Service - Excellence




GCW - NAPL Dissolution Without Capture = Mobilization

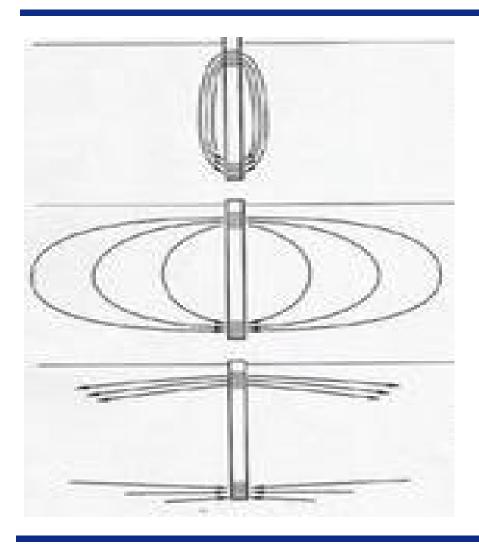
GCW - NAPL Mobilization at Keesler AFB MS

Source Area Concentrations

Down Gradient Concentrations

GCW - Lower Cost Than Pump and Treat?

- Little Direct Field Evidence
- Cost of Monitoring GCW>PnT
 - Complexity
- Cost of Engineering GCW>PnT
 - Limited vendors
- Cost of O&M GCW>PnT
 - Down-hole
- Permitting costs GCW<<PnT</p>
- Energy (Pumping Cost)?
- Number of Wells?



GCW - Fewer Wells Than Pump and Treat?

- GCW Single Well
 - Extraction & injection in same well
 - However, GC Well is More Expensive
 - More complex
 - Down-hole components
 - Larger diameter
 - Multiple screens
- Radius of Influence of GCW<PnT (at given flow rate)</p>
 - Volume limited due to Recirculation
 - Mass Loading limited due to Recirculation
- Therefore, additional wells may be required

GCW - Radius of Influence

- GCW circulation geometry is effected by anisotropy
 - Anisotropy is basically the ratio of Kh:Kv
- Short Circuiting Condition
 - Kh:Kv = 0 to 3
 - Ratio too low
- Ideal Conditions
 - Kh:Kv = 3 to 10
 - Optimum Ratio
- No Circulation Condition
 - Kh:Kv = >10
 - Ratio too high

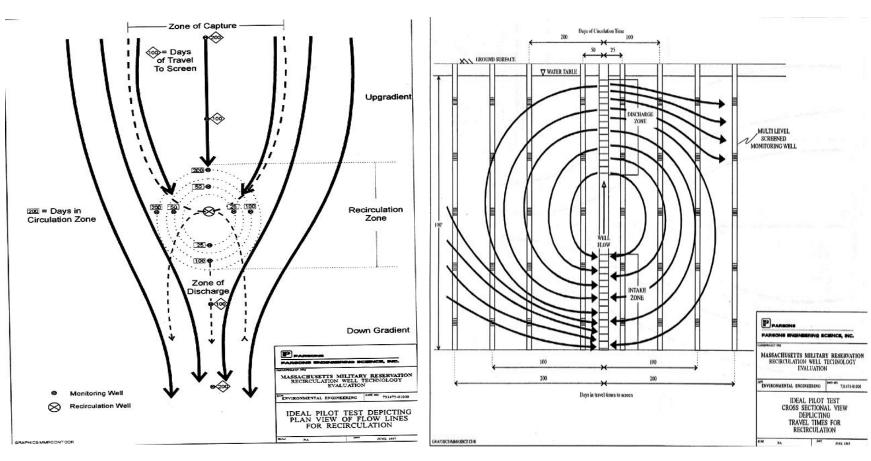
GCW - Lower Energy Requirements Than Pump and Treat?

- Energy costs are proportional to height to which water must be lifted for treatment
 - However, Hill AFB study indicated GCW at 100 ft. would require more energy than PnT
- More Air is Required for Co-current Stripper
 - Most Air Strippers use Counter-Current Flow
 - Air and liquid flow in opposite directions
 - More efficient, requiring a lower Air:Water ratio
 - 99.9% efficiency air strippers widely available
 - Most GCW systems use Co-current Flow
 - Air and liquid flow in the <u>same</u> direction
 - Less efficient, requiring a higher Air:Water ratio
 - 70-93% operational stripping efficiencies generally seen

GCW - All Components Below Ground?

- Not Always
 - Carbon Canisters for off-gas capture
 - Down-Hole Carbon Canisters have been discussed
- Also Possible with Pump and Treat
 - Air Stripper could be placed in vault if you wanted

GCW - Permitting Advantages Over Pump and Treat?


- YES No Question!
 - "As long as groundwater is not brought to surface ..."
 - No re-injection issues
 - But EPA is taking notice
 - Things may change

Other Issues: Monitoring Considerations

PLAN VIEW

CROSS SECTION

Integrity - Service - Excellence

Other Issues: Monitoring Considerations

- Monitoring is more difficult than PnT
- Recirculation Cell is very difficult to prove or quantify
 - Zone of Influence is 3-Dimensionally, Heterogeneous
 - Requires extensive tracer studies
 - Often relies on pressure transducers, changes in gradient heads, and extensive modeling
- GCW process monitoring is difficult
 - Geochemical changes within aquifer
 - Mass balances difficult to calculate
 - Degree of Recirculation
 - Inaccurate flow rate measurements
 - Mass = Concentration X Flow rate
- Therefore, monitoring optimization maybe more difficult

Other Issues: 0&M Considerations

- O&M is more difficult <u>Everything is down-hole</u>
 - Assume Reliability(i.e., Mean-Time-Between-Failure) for PnT and GCW is equal,
 - Maintainability (Mean-Time-to-Repair) has to be greater due to down-hole nature of GCW
- Injection Well Plugging is more problematic
 - Iron
 - Carbonate
 - Biofouling
- Effluent screen & well replacement: GCW vs PnT
- Process Optimization may be more difficult due to operational and design limitations of GCW system

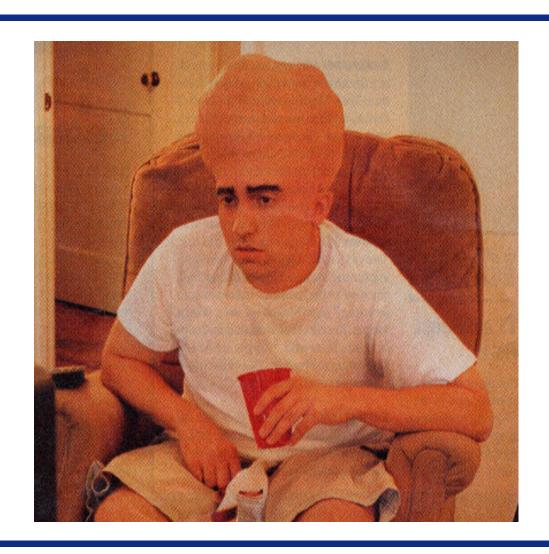
"What we got here is a failure to recirculate ... "

Integrity - Service - Excellence

- 10+ year old technology
- Not well understood or documented
- No widespread commercial acceptance
- Potential value for NAPL treatment unproven
 - Keesler AFB
 - Cape Canaveral AFS

GCW - Reasons to Use

- Vertical Flow for Improved NAPL Treatment
- Severe Permitting Problems
- A placebo needed



Conclusion

- There are good reasons for promoting the use of emerging or innovative technologies
 - When potential to either be more effective, or less costly than conventional technology there is logic in taking risk
- Unfortunately, no widespread potential for GCW to be either more effective or less costly than ETR

GCW Technology It's A Lot to Absorb

Backup Slides

Extraction-Treatment-Reinjection Continuum

onvention	onal	GCW
← ETR —		-
		Vertical Flow
Capture Zone		
Monitoring		
Geological Sensi	tivity	
	Water I	_evel Change
Design Simplicity		
Flexibility		
Experience		
	Less Favorable	More Favorable
	n of Extraction, Treatment, and lation Wells (GCW).	Reinjection (ETR)

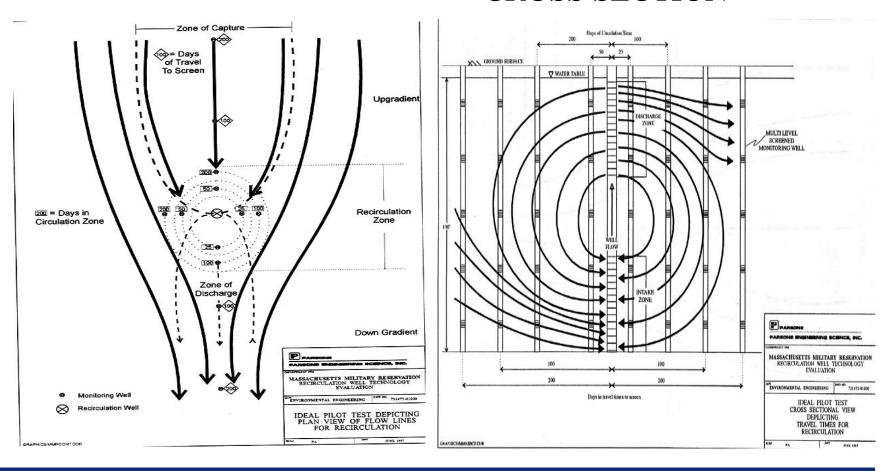
Vertical Flow

- Vertical flow has potential to increase removal of NAPL/sorbed material
 - however, if no highly contaminated source zone or sorbed material exists, then no value in inducing vertical flow as with GCW Sub-bullet two
- Greater process treatment efficiency obtained with improved treatment aboveground in an ETR system
 - again, if greater efficiency aboveground, then no value in inducing vertical flow as with GCW
 - however, energy costs of pumping water is proportional to height to which water must be lifted for treatment

Capture Zone

- For purpose of plume capture it is not necessary to create a circulation cell
 - however, failure of GCW to create a circulation cell could result in limited or no plume capture
 - lack of circulation cell development could spread contaminants into previously uncontaminated areas
 - poor in-well treatment efficiency followed by re-injection
 - dissolution of sorbed material escaping down gradient Major bullet two
- Circulation cell reduces volume of untreated groundwater capable of being captured and treated
- Complicated by non-uniform capture zones with depth

Monitoring Considerations

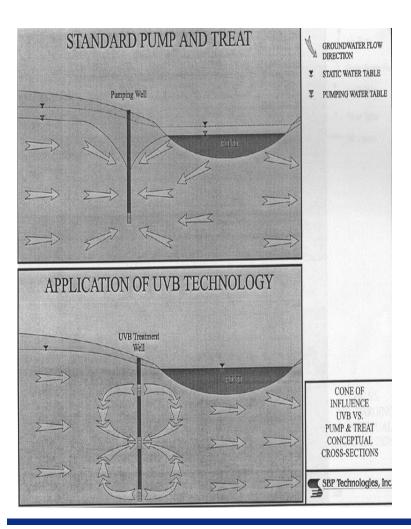

- GCW & close-coupled ETR expected to be more difficult, extensive & costly than conventional ETR
 - groundwater flow in capture zone of conventional ETR relatively simple to determine with reasonable certainty
 - GCW and close-coupled ETR requires monitoring with respect to depth and distance of 1) hydrostatic pressures and 2) vertical & horizontal permeability's
 - interpreting groundwater quality data with respect to depth and distance is also challenging
 - complexity common for both site characterization and operational monitoring

GCW Monitoring

PLAN VIEW

CROSS SECTION

Integrity - Service - Excellence



Geological Sensitivity

- GCW & close-coupled ETR more sensitive to geological and hydrogeological conditions than conventional ETR
 - impact of stratification on vertical permeability
 - single thin stratum of lower permeability can have significant impact on vertical permeability
 - Example
 - 100•ft thick homogenous sand where Kh=Kv=0.01 cm/sec; ratio=1
 - Introduce 1•ft clay layer where K=0.000001 cm/sec
 - average Kh decline by 1%; however, Kv declines by 99%
 - groundwater escapes down gradient as no cell develops

Water Table Impact

- A potential concern at sites
- GCW designed to operate with minimum impact
- However, ETR design possible with no more or less adverse impact than GCW or closecoupled ETR
 - requires placement of injection wells in locations that would provide the desired control in critical locations

Simplicity of Design

ETR

- conventional well
- extraction & injection wells
- single screen
- single pump (extraction)
- equipment aboveground
- typically smaller diameter
- less soil cuttings
- typically less costly to install
- almost all use countercurrent air strippers

GCW

- specialized wells
- extract/re-inject same well
- 2 or more screens
- multiple pumps possible
- more equipment downhole
- larger in diameter
- more soil cuttings
- typically more costly to install
- most use co-current air strippers

Design Flexibility

ETR

- Uses separate extraction and injection wells
- Individual well flow possible
- Optimize extraction rate
- Modify groundwater hydraulics or water table
- Treatment of Inorganics (e.g., cadmium, chromium)
- Well replacement, generally, limited to re-injection well
- Well replacement cheaper
- Less maintenance downtime

GCW

- Uses single well to extract and inject
- Manipulation could effect stripping efficiency
- Flow in = Flow out
- Designed not to effect water table
- Limited application (e.g., down hole carbon)
- Well replacement involves entire well
- More expensive to replace
- More: down-hole location

Experience

ETR

- Environmental community more experience with ETR
- Applied at far more sites
- Risks, problems, costs & performance characteristics are well known
- Hundreds of good competitive sources for ETR technology

GCW

- Environmental community less experience with GCW
- Applied at far fewer sites
- Risks, problems, costs and performance less known
- Only 3 significant national sources of GCW technology known

Conclusion

- There are good reasons for promoting the use of emerging or innovative technologies
 - When potential to either be more effective, or less costly than conventional technology there is logic in taking risk
- Unfortunately, no widespread potential for GCW to be either more effective or less costly than ETR